Health & Wellness

The Importance of Anaerobic Power Training for Triathletes

Chiefly, the body uses the aerobic energy system for physical activities, sports or otherwise. This energy source uses oxygen that is carried by the respiratory and circulatory systems. The second, and less utilized, energy source uses anaerobic power stored in muscles, accessed without oxygen, and utilized by both the phosphogen and lactic acid systems. It is this second anaerobic system that provides triathletes with the force needed to set them apart from their competitors.

In humans, anaerobic power is only available as short bursts of energy for no more than around two minutes. It is utilized when the body is being pushed as hard as possible. For triathletes, this might translate as a final sprint, a push on the bicycle, or a last effort in swimming. With the correct training, anaerobic power capacity can be increased to improve athletic performance.

The Science Behind Anaerobic Power

Anaerobic power is stored in the muscle tissue in the form of adenosine triphosphate (ATP). This store only provides a burst of around one to four seconds of energy, after which the phosphate creatine (PC) system is used to create additional ATP to last for up to 20 seconds for well-trained athletes. After both of these supplies are diminished, the lactic acid (or glycosis) system begins to break down carbohydrates for more energy.

When lactate stores are also used up, an athlete becomes unable to continue accessing the anaerobic energy sources until stores are replenished. The amount of time this takes depends on training. For untrained and moderately-trained individuals, it may take a long time for stores to be restored, while for athletes who have worked on building up their anaerobic abilities, they can be refreshed in as little as one or two minutes.

Anaerobic Power Training

Discovering current anaerobic capacity can help athletes to devise a training plan for further power development. One of the best ways to do this is through a Wingate Test, as the test does not require the use of a sports lab and can be completed sprinting, swimming, cycling or any other activity that allows the athlete to exert full force. The test should be conducted every few months to allow for changes in the athletes abilities during this time, and in order to constantly develop the best possible training regime for the individual’s need.

Some athletes are initially opposed to working on improving anaerobic power due to the myth that lactate is responsible for fatigue, post workout pain, and other negative side effects.

For example, anaerobic power is especially neglected in cycling, according to Training 4 Cyclists, who claim that around 98% of road cycling is carried out using aerobic metabolism. Even though it’s true that a higher anaerobic threshold and VO2max are critical to improving endurance performance, many races hinge on instances where a brief anaerobic power burst can make all the difference.

When cycling, triathletes often employ a power meter to provide accurate pacing control during anaerobic power training. With regard to work out methodology, many triathletes employ interval training or high-intensity interval training (HIIT) regimens to efficiently boost anaerobic power capacity.

Whatever the method, triathletes should incorporate anaerobic power training into their work out plan; it may prove to be the difference between winning and losing.

  Discuss This Article

Comments: 0

Add a New Comment

Thank you for adding to the conversation!

Our comments are moderated. Your comment may not appear immediately.